61 research outputs found

    Mitigating the Cost of Anarchy in Supply Chain Systems

    Get PDF
    In a decentralized two-stage supply chain where a supplier serves a retailer who, in turn, serves end customers, operations decisions based on local incentives often lead to suboptimal system performance. Operating decisions based on local incentives may in such cases lead to a degree of system disorder or anarchy, wherein one party's decisions put the other party and/or the system at a disadvantage. While models and mechanisms for such problem classes have been considered in the literature, little work to date has considered such problems under nonstationary demands and fixed replenishment order costs. This paper models such two-stage problems as a class of Stackelberg games where the supplier announces a set of time-phased ordering costs to the retailer over a discrete time horizon of finite length, and the retailer then creates an order plan, which then serves as the supplier's demand. We provide metrics for characterizing the degree of efficiency (and anarchy) associated with a solution, and provide a set of easily understood and implemented mechanisms that can increase this efficiency and reduce the negative impacts of anarchic decisions

    Improved approximation algorithm for k-level UFL with penalties, a simplistic view on randomizing the scaling parameter

    Full text link
    The state of the art in approximation algorithms for facility location problems are complicated combinations of various techniques. In particular, the currently best 1.488-approximation algorithm for the uncapacitated facility location (UFL) problem by Shi Li is presented as a result of a non-trivial randomization of a certain scaling parameter in the LP-rounding algorithm by Chudak and Shmoys combined with a primal-dual algorithm of Jain et al. In this paper we first give a simple interpretation of this randomization process in terms of solving an aux- iliary (factor revealing) LP. Then, armed with this simple view point, Abstract. we exercise the randomization on a more complicated algorithm for the k-level version of the problem with penalties in which the planner has the option to pay a penalty instead of connecting chosen clients, which results in an improved approximation algorithm

    E-supply chain integration adoption: examination of buyer–supplier relationships

    Get PDF
    The purpose of this study is to empirically examine the adoption of e-supply chain integration by electrical and electronic industry suppliers. This study has integrated both the transaction cost and resource-dependence models in understanding the influence of buyer–seller relationships on e-supply chain integration. Hypotheses were developed based on the proposed model. Data were collected from 122 electrical and electronic suppliers located in Malaysia. The data was examined using multiple regression analysis. The results showed that Asset Specificity, Product Technological Uncertainty, Transaction frequency, Proportion of sales to e-supply chain integration promoter, and number of customers are able to explain suppliers’ decisions to adopt e-supply chain integrations with their buyers. Buyers that would like to improve the adoptions of e-supply chain integration will be able to formulate and plan strategies from the buyer–seller relationships perspectives

    Integrated market selection and production planning: complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to in°uence demand characteristics can lead to an improved match between supply and demand. This paper presents a new class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP-complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very effcient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    Integrated market selection and production planning: Complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to influence demand characteristics can lead to an improved match between supply and demand. This paper presents a class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP -complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very efficient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Lagrangian relaxation bounds for a production-inventory-routing problem

    Get PDF
    We consider a single item Production-Inventory-Routing problem with a single producer/supplier and multiple retailers. Inventory management constraints are considered both at the producer and at the retailers, following a vendor managed inventory approach, where the supplier monitors the inventory at retailers and decides on the replenishment policy for each retailer. We assume a constant production capacity. Based on the mathematical formulation we discuss a classical Lagrangian relaxation which allows to decompose the problem into four subproblems, and a new Lagrangian decomposition which decomposes the problem into just a production-inventory subproblem and a routing subproblem. The new decomposition is enhanced with valid inequalities. A computational study is reported to compare the bounds from the two approaches

    Functional Analysis of Host Factors that Mediate the Intracellular Lifestyle of Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interference (RNAi) to define and characterize Cn host factors. The system recapitulated salient aspects of fungal interactions with mammalian cells, including phagocytosis, intracellular trafficking, replication, cell-to-cell spread and escape of the pathogen from host cells. Fifty-seven evolutionarily conserved host factors were identified using this system, including 29 factors that had not been previously implicated in mediating fungal pathogenesis. Subsequent analysis indicated that Cn exploits host actin cytoskeletal elements, cell surface signaling molecules, and vesicle-mediated transport proteins to establish a replicative niche. Several host molecules known to be associated with autophagy (Atg), including Atg2, Atg5, Atg9 and Pi3K59F (a class III PI3-kinase) were also uncovered in our screen. Small interfering RNA (siRNA) mediated depletion of these autophagy proteins in murine RAW264.7 macrophages demonstrated their requirement during Cn infection, thereby validating findings obtained using the Drosophila S2 cell system. Immunofluorescence confocal microscopy analyses demonstrated that Atg5, LC3, Atg9a were recruited to the vicinity of Cn containing vacuoles (CnCvs) in the early stages of Cn infection. Pharmacological inhibition of autophagy and/or PI3-kinase activity further demonstrated a requirement for autophagy associated host proteins in supporting infection of mammalian cells by Cn. Finally, systematic trafficking studies indicated that CnCVs associated with Atg proteins, including Atg5, Atg9a and LC3, during trafficking to a terminal intracellular compartment that was decorated with the lysosomal markers LAMP-1 and cathepsin D. Our findings validate the utility of the Drosophila S2 cell system as a functional genomic platform for identifying and characterizing host factors that mediate fungal intracellular replication. Our results also support a model in which host Atg proteins mediate Cn intracellular trafficking and replication

    Production planning with price-dependent supply capacity

    No full text
    We consider a production planning problem in which a producer procures an input component for production by offering a price to suppliers. The available supply quantity for the production input depends on the price the producer offers, and this supply level constrains production output. The producer seeks to meet a set of demands over a finite horizon at a minimum cost, including component procurement costs. We model the problem as a discrete-time production and component supply–pricing planning problem with nonstationary costs, demands, and component supply levels. This leads to a two-level lot-sizing problem with an objective function that is neither concave nor convex. Although the most general version of the problem is NP-hard, we provide polynomial-time algorithms for two special cases of the model under particular assumptions on the cost structure. We then apply the resulting algorithms heuristically to the more general problem version and provide computational results that demonstrate the high performance quality of the resulting heuristic solution methods

    To Appear in Supply Chain Optimization

    No full text
    Consider two retailers, whose inventory is provided by a common supplier who bears all the inventory risk. We model the relationship among the retailers and supplier as a single-period cooperative game in which the players can form inventory-pooling coalitions. Using the Shapley value to allocate the profit, we analyze various schemes by which the supplier might pool inventory she holds for the retailers. We find, among other things, that the Shapley value allocations are individually rational and are guaranteed to coordinate the supply chain; but they may be perceived as unfair in that the retailers ’ allocations can, in some situations, exceed their contribution to supply chain profit. Finally we analyze the effects of demand variance and asymmetric service level requirements on the allocations. 1 1 An Inventory Centralization Model Consider an electronics manufacturing services provider (EMS), who keeps inventory of cpu chips for two or more competing original equipment manufacturers (OEM). The current inventor
    • …
    corecore